BEGINNING OF COURSE MEMO

CHE 2202, THERMODYNAMICS, SPRING, 2013

FULL CLASS MEETINGS: MWF 1100-1150; CHE 005.

INSTRUCTOR: Mr. J. P. O'Connell; jpo2x@virginia.edu

(Office: CHE 310; Phone: 924-3428; Hours: MWF 0900-1000; M 1530-1800; TR 1400-1600)

GTA: Simpson Gregoire, seg3ms@virginia.edu, WDF 209A. Hours: TBA

E-MAIL: CHE2202S13@collab.itc.virginia.edu

TEXT: J.M. Haile, "Lectures in Thermodynamics, Volume 1", Central, SC: Macatea Productions, 2002 plus "Volume 2, Lectures II - 57. Purchase pdf file on CD from Instructor for \$22.00. Volume 1, but not 2, is also available from http://www.booksonboard.com/index.php?BODY=viewbook&BOOK=190956.

REFERENCE BOOKS (*ON RESERVE AT SCIENCE & ENGINEERING LIBRARY):

S.I. Sandler, "Chemical, Biochemical, and Engineering Thermodynamics 4th Ed.", New York: Wiley, 2006. *M.D. Koretsky, "Engineering and Chemical Thermodynamics", Hoboken: Wiley, 2004.

- *R. Sonntag, C. Borgnakke, & G. van Wylen, "Fundamentals of Thermodynamics, 6th Ed., New York: Wiley, 1998 (Used previously as text for ENGR 202, MAE 210).
- *J.M Smith, H.C. Van Ness, & M.M. Abbott, "Introduction to Thermodynamics, 5th Ed.", New York: McGraw-Hill, 1996 (Used previously as text for CHE 202).
- *M.M. Abbott & H.C. Van Ness, "Schaum's Outlines: Thermodynamics with Chemical Applications, 2nd. Ed.", New York: McGraw-Hill, 1989.

*H.C. Van Ness, "Understanding Thermodynamics", New York: McGraw-Hill, 1969.

*J.B. Fenn, "Engines, Energy and Entropy", Pittsburgh: Global Publishing, 2003.

*P. Perrot, "A to Z of Thermodynamics", Oxford University Press, 1998.

CATALOG DESCRIPTION: CHE 2202 -(3)(S) Thermodynamics. Corequisite: APMA 2120

Includes the formulation and analysis of the first and second laws of thermodynamics; energy conservation; concepts of equilibrium, temperature, energy, and entropy, partial molar properties; pure component and mixture equations of state; processes involving energy transfer as work and heat; reversibility and irreversibility; and closed and open systems and cyclic processes. Three lecture hours.

COURSE OBJECTIVES

Enhance Technical Capabilities by

Learning the fundamental concepts, principles & terminology of macroscopic thermodynamics of pure components and mixtures

Being able to recognize thermodynamic concepts in the phenomena, behavior and problems of real, simplified & idealized physicochemical systems and problems

Knowing the expected quantitative behavior of the thermodynamic properties of matter & how to formulate and use data about them in word, equation, and graph forms

Developing a proficiency with the use of 1st & 2nd law equations (including entropy generation) on real, simplified & idealized, single & multiphase, static and dynamic systems

Expand Industrial Readiness by

Applying 1st & 2nd law principles & property data to energy conversion systems Appreciating measures of efficiency & the factors most influencing energy device design Applying skills to recognize energy conversion devices & analyze their behavior; compute properties of pure component and mixture equilibrium states

Raise Leadership/Cultural Competence

from analyses and information retrieval about energy efficiency and environmental effects Sharpen <u>Technical Communication Skills</u> with group/class presentations, discussions and quizzes Increase <u>Individual/Team Effectiveness</u> by collaborative learning in class

COURSE GRADING (See "General Considerations" for details)

Final Examination	25%
Examinations (3)	30
In-Class Activities (Clickers, Presentations, Demos, Quizzes)	30
Homework	15
Total	100

CHE 2202, Spring 2013 Class Syllabus

Date Topic	Reading Assignment*
Jan 14 Organization	-
16 The Thermodynamics of Things	Preface, Notes
18 What Is Thermo & The Nitty-gritty	L1, L2
23 Quantities, Review of PvT Properties	L3, L4
25 Review of PT & Pv Diagrams, Changing the State	L5, L6
28 Idealized Models for Pure Components & Virial EOS	L7, L8
30 Cubic EoS	L9
Feb 1 Corresponding States I.	L10
4 Corresponding States II.	L11
6 Work of Volume Change, Reversible Changes	L12, L13
8 Problem Solving	L14
11 Joule's Experiments	L15
13 ⁺ Internal Energy (Exam 1 through Problem Solving)	L16
15 One-step Processes	L17
18 Enthalpy & Isenthalpic Expansions	L18, L19
20 Sensible & Latent Heats	L20
22 Multistep Processes I.	L21
25 Multistep Processes II.	L22
27 Steady Flow Systems Including Kinetic Energy Changes	L23, L24
Mar 1 Steady Isenthalpic Processes	L25
4 Shaft Work	L27
6 Cyclic Processes	L28
8 Efficiency	L29
18 Second Law, Entropy	L30, L31
20 Feasibility of Adiabatic Processes	L32
22 Thermodynamic Analysis of Steady Nonadiabatic Processes	-
25 Vapor-Liquid Power Cycles	L34
27 ⁺ Gas Power Cycles (Exam 2 through Entropy and Feasibility)	L35
29 Vapor-Compression Heat Pumps I	L36
Apr 1 Vapor-Compression Heat Pumps II. Fundamental Equations for Conceptua	ls L36, L37
3 [@] No Class - Facilities Visit	-
5 [@] No Class - Facilities Visit	-
8 Residual Properties	L38 - L40
10 Phase Equilibria for Pures, Pure Component VLE	L41- L43
12 Introduction to Mixtures, Partial Molar Properties (PMP)	LII, L45
15 Fundamental Equations for Open Systems; Changes in Properties on Mixin	g L46, L47
17 Changes of Properties on Mixing & PMP of Ideal Gases; Entropy & Disorde	er L48, L49, L50
19 Properties of Ideal Solutions; Fugacity	L51, L52
22 Pure-Component Fugacities from PvT Models and Condensed Phases	L53, L54
24 ⁺ PvTx Models for Mixtures; Residual Properties from PvTx Models;	
Mixture Fugacities from PvTx Models (Exam 3 through Fugacity)	L55, L56, L57
26 Thermodynamics and Biology	Notes
29 Summing Up	L44, Notes
May 6 [#] Final Examination	-
* Lectures (Ln) of Haile's Lectures to be looked at <u>BEFORE CLASS</u> ; "Notes" in Collab/2	Resources
+ Exams taken during evenings	
" Dava at agginment dama/facility ingraction	

[®] Days of equipment demo/facility inspection
[#] Final Examination at UVa scheduled day & time (0900-1200) for MWF 1100.