Thermo Virtual Community of Practice (VCP)

Session 5: Instructional activities — Part 2: Interactive learning techniques

May 1, 2013

John Chen
California Polytechnic State University
jchen24@calpoly.edu

Milo Koretsky
Oregon State University
milo.koretsky@oregonstate.edu

Tentative Agenda

- Introductions, Objectives ~ 10 min
- Peer instruction mock run ~ 10 min
- Participants' reflections vs. lecture ~ 5 min
- Concept Warehouse tour ~ 15 min (group)
- Bucknell Inquiry based activities ~ 5 min (group)
- Silverthorn tips for active learning ~ 5 min
- Wrap-up and next week \sim 10 min

Team Flow

Ganesh Balasubramanian Iowa State

Jeff LaMack Milwaukee School of Engineering

Melissa Pasquinelli North Carolina State

Georg Pingen Union

Nastaran Hashemi Iowa State

Team Energy

Nihad Dukhan **Detroit Mercy**

Calvin Li Villanova

Krishna Pakala **Boise State**

Hessam Taherian

Robert F Richards Alabama at Birmingham Washington State

Killer Watts

Jamie Canino Trine

Heather Dillon Portland

Edwin Wiggins Webb Institute

Joseph Tipton Evansville

Team Green Engineering

Margot Vigeant Bucknell

John O'Connell Virginia

Zhihua Xu Minnesota Duluth

Sapna Sarupina Clemson

TdS

Sooby Bhattacharjee San Diego State

Ashland Brown Pacific

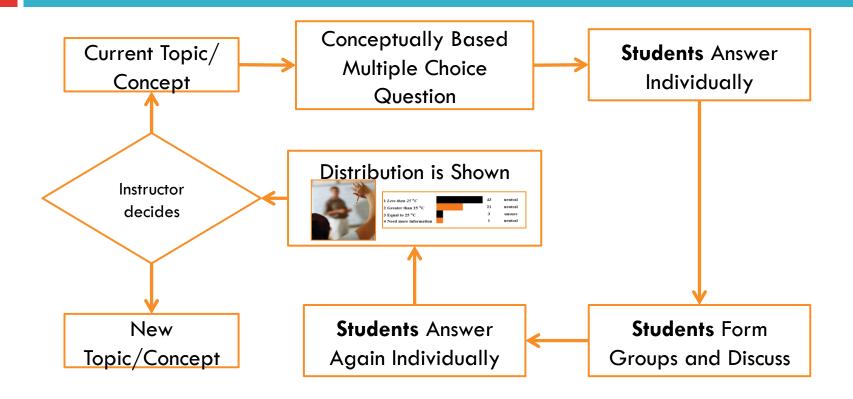
Betta Fisher Cornell

H. S. Udaykumar lowa

Team Cycle

John Chen California Polytechnic

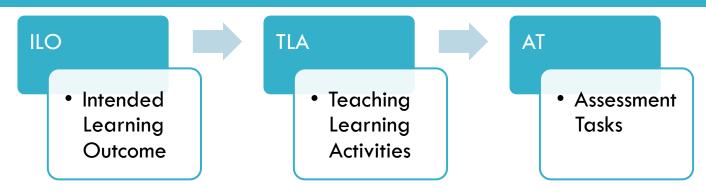
Milo Koretsky Oregon State



Sadi Carnot École Polytechnique

Objectives

- Experience one active learning technique "as a student" and reflect on this experience
- Identify resources for ConcepTests, concept inventories, and inquiry-based activities

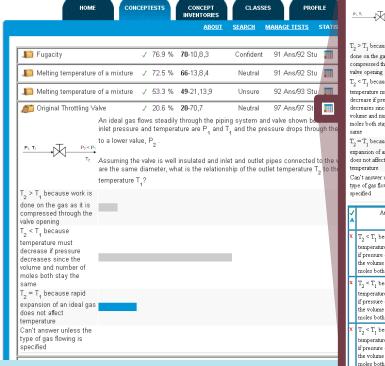

Peer Instruction - Mock Run

Peer Instruction Discussion

You just experienced Peer Instruction as a student. What are your thoughts about how this type of learning experience compares with "traditional" lecture

Constructive Alignment (CA)

- 1. All assessments should address one or more pre-formulated learning objectives;
- 2. Summative assessment of a skill should be done only after adequate practice and feedback in the skill has been provided in class activities and assignments;
- 3. If a learning objective is important, be it analytical, critical or creative thinking, writing or speaking, or anything else, it should be assessed. The assessment drives the learning.


Richard Felder (Technical Teaching)

ConcepTests and Concept Inventories

Туре	Assessment	Question Grouping	Quality
ConcepTests	Formative	Single question or set of single questions	Various
Concept Inventories	Summative	An instrument with many linked questions	Valid & Reliable

Concept Warehouse – quick tour

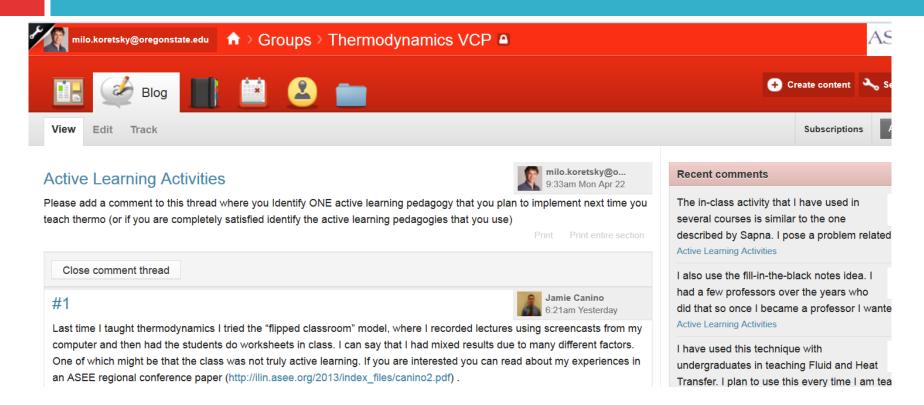
■ Original Throttling Valve

P	r_1 , r_2 temp r_2 Assu diam	leal gas flows steadily through the piping system and valve shown below. The inlet presenture are \mathbb{P}_1 and \mathbb{T}_1 and the pressure drops through the valve to a lower value, \mathbb{P}_2 . ming the valve is well insulated and inlet and outlet pipes connected to the valve are the test, what is the relationship of the outlet temperature \mathbb{T}_2 to the inlet temperature \mathbb{T}_1 ?	
do	> T ₁ because work is ne on the gas as it is mpressed through the twe opening		7
ter de de vo mo sau	<pre>< T₁ because mperature must crease if pressure creases since the lume and number of loles both stay the me = T₁ because rapid</pre>		70
exq	pansion of an ideal gas es not affect nperature	-	20
tyr	nn't answer unless the oe of gas flowing is ecified		0
✓	Answer(s)	Explanation	Confidence
×	Answer(s) $T_2 < T_1 \ \ \text{because}$ temperature must decrease in pressure decreases since the volume and number of moles both stay the same	Explanation The explanation given is sufficient	
x	$T_2 \le T_1$ because temperature must decrease if pressure decreases since the volume and number of		A
x x	$T_2 < T_1$ because temperature must decrease fipressure decreases since the volume and number of moles both stay the same $T_2 < T_1$ because temperature must decrease infressure decreases since the volume and number of	The explanation given is sufficient T2 must be lower than T1, using the ideal gas law, if Pressure drops then so must	5

Concept Warehouse: in-class or homework

Online with cell phones, laptops, and clickers

Download in Microsoft PowerPoint and Word



Inquiry Based Activities

- Carnot Engine Cycle:
 http://www.facstaff.bucknell.edu/mvigeant/Thermo_JS/Carnot/Carnot-Engine.html
- Piston Cylinder Model:
 http://www.facstaff.bucknell.edu/mvigeant/Thermo_JS/Piston/cycle-modeler.html
- Reversibility of Mixing:
 http://www.facstaff.bucknell.edu/mvigeant/Thermo_JS/Mixing/Mixing.html
- Pump Reversibility:
 http://www.facstaff.bucknell.edu/mvigeant/Thermo_JS/Pump_Reversibility_edit/pump-reversibility.html
- Cough Drop Dissolution (Steady State vs. Equilibrium):
 http://www.facstaff.bucknell.edu/mvigeant/Thermo_JS/Steady_State/steadyState.html

Blog Review

Dee Silverthorn tips for active learning

- Define your goals and objectives
- □ Start small and don't change too many things at once.
- □ Tell your students what you're doing and why, and KEEP TELLING THEM
- □ Provide students with tools to help them change
- Match the assessment to your teaching style, goals, and objectives.
- □ Have the right attitude.

Thoughts about Fall

- □ The intent is to continue in some form this fall
 - Is this time good (poll)
 - Ideas for what we should do and the frequency that we should meet

For Session 6: May 8, 2013

- Read the cooperative learning handout developed by Karl Smith available in the week 6 folder https://aseevcp.asee.org/?q=thermovcp/node/383
- Review the Myers Briggs type Indicator
 http://web.cortland.edu/andersmd/learning/mbti.htm
 http://www.myevt.com/teamdev/building-your-teams-type-table
- Identify ONE hint for using teams in class or ONE thing you struggle with and post it on the BLOG:

https://aseevcp.asee.org/?q=thermovcp/blog

 Update your syllabus based on VCP this far with track changes – incorporate an active learning strategy or two.