EELE 201 Circuits I

Fall 2013 (4 Credits)

Instructor:

Jim Becker 535 Cobleigh Hall 994-5988 Office hours: Monday 2:30-3:30 pm and Wednesday 3:30-4:30 pm or by appointment

EMAIL: For EELE 201-related questions, please use my d2L email address

Teaching Assistant: TBA

Prerequisites: EELE 101, M172 *Corequisites:* PHSX 222

Required Text: Introduction to Electric Circuits, 8th edition, Richard C. Dorf and James A. Svoboda (John Wiley & Sons, Inc. 2010). ISBN 978-0-470-52157-1

Required Text: PSpice For Linear Circuits W/Cd, 2nd edition, James A. Svoboda (John Wiley & Sons, Inc. 2007). ISBN 978-0-471-78146-2

Course Website: The Desire To Learn (D2L) course management system will be used to augment the course. On this site you will find course news, homework listings, lab assignments, as well as "course modules." The modules encapsulate a given chapter from the course text and closely follow what I cover in lecture. In addition, you will find "desktop presentations." These presentations capture audio/video as I introduce key concepts in the course or step through the solution to important example problems.

Course Description (from the MSU Catalog):

Introduction to circuit analysis, Ohm's and Kirchhoff's Laws, nodal and mesh methods, network theorems; resistors, capacitors, inductors, dependent sources, ideal op-amps; the complete response of first order circuits; complex frequency and phasors; steady-state AC circuits, coupled inductors and ideal transformers.

Final Exam

The final is scheduled for Thursday, December 12th from 4-5:50 pm in our normal classroom.

Disabled Student Services: If you have a documented disability for which you are or may be requesting an accommodation(s), you are encouraged to contact me and Disabled Student Services as soon as possible.

Homework	10%	Lab	25%
Exam 1	15%	Exam 2	15%
Exam 3	15%	Final Exam	20%

*** A student must receive at least a 70% average on the exams (Exam 1, 2, 3 and the final) to pass the class ***

Homework and lab reports are due at the <u>beginning</u> of class on the due date. Should you turn in the assignment once the class has begun, 20% will be deducted from your assignment so don't be late for class. **HW turned in after class will not be accepted**. Late <u>lab reports</u> will be assessed a 20% late penalty per day (10% if turned in after the beginning of class but before 5pm on the due date).

Project circuit-related group work: A portion of your grade will be derived from group-submitted work. The final exam will include a section of conceptual questions pertaining to the project circuit-related activities. Your score on this section will provide a weighting factor for the group work. For example, let's say your group submitted stellar work, but you did little to contribute to this work. It is highly likely you will do poorly on the conceptual section and then your score on the group work will drop accordingly.

Laboratory

The laboratory section of this course will make up 25% of your final grade. We will have approximately eleven lab experiments and one lab quiz counting as lab grades. Lab reports and the lab quiz will be worth twice the conventional lab grade. A student must receive at least 60% in the laboratory grade to pass this course. <u>Attendance will be taken during the lab sessions and no more than 1 unexcused absence is allowed for a passing grade</u>. You must come to your registered lab session.

Topics and Text Chapters

Chapter	Topics
1	Electric Circuit Variables
2	Circuit Elements
3	Resistive Circuits
4	Methods of Analysis of Resistive Networks
5	Circuit Theorems
6	The Operational Amplifier
7	Energy Storage Elements
8	The Complete Response of RL and RC Circuits
10	Sinusoidal Steady-State Analysis
11	AC Steady-State Power

Grading

Course Outcomes

Following is a partial list of course outcomes for EELE 201. From time to time during the semester, review the list to ensure that you are able to fulfill the outcome statements as the corresponding topics are encountered.

Outcome Statement	Strongly Agree	Somewhat Agree	Neither Agree Nor Disagree	Somewhat Disagree	Strongly Disagree
I can recall the units of charge, current, potential, resistance,					
capacitance, and power.					
I can convert between the following unit prefixes and recall their					
values from memory: pico, nano, micro, milli, kilo, and mega					
I can utilize Ohm's Law to calculate voltage, current or resistance.					
I can utilize a resistor color chart to determine the nominal value of					
a resistor and its tolerance.					
I can calculate the power dissipated in a resistor.					
Given a sketch of a sinusoidal waveform, I am able to write an					
equation that properly describes its amplitude, frequency and phase					
shift with respect to a reference sinusoid.					
I am able to solve a system of linear equations.					
I am able to describe the difference between linear and nonlinear					
models and give examples of circuit elements for both categories.					
I am able to determine amplitude, frequency, period and phase shift					
of a sinusoidal signal using an oscilloscope.					
I am able to describe the properties of resistors, capacitors,					
inductors and diodes and give examples of how they can be used in					
electronic circuits.					
I can calculate the equivalent resistance of resistors in series and					
parallel.					
I can apply Ohm's Law and Kirchhoff's Laws to simple circuits					
with resistors and voltage sources.					
I am able to able to apply the "Node Voltage Analysis" technique to					
solve circuits containing resistors, capacitors and inductors.					
I am able to able to apply the "Mesh Current Analysis" technique to					
solve circuits containing resistors, capacitors and inductors.					
I am able to sketch and describe the I-V characteristics of resistors					
and diodes.					
I am able to resolve a circuit into either its Thévenin or Norton					
equivalent forms.					
I am able to articulate what is meant by the property of					
superposition as applied to electrical circuits.					
Given a circuit to be connected to a load, I am able to determine the					
value of the load necessary to achieve maximum power transfer to					
the load.					
Assuming ideal operational amplifier (op-amp) operation, I am able					
to analyze circuits containing op-amps.					
I am able to design both inverting and noninverting amplifiers for a					
specified gain using op-amps.					
I am able to design a summing amplifier using op-amps.					
I am able to determine the initial conditions for circuits containing					
capacitors and/or inductors.					
I am able to use a DMM to make resistance, voltage and current					

Tentative List Of EELE 201 Course Outcomes

magguraments	<u>г</u>		
I understand how the DMM's impedance level can alter sirewit			
habevior when making resistance, voltage and current			
mensurements			
I am comfortable in using the oscilloscope to display and interpret			
the frequency period and relative phase shift of a sinusoid			
I am able to articulate what is meant by a "dependent" source and			
i ani able to articulate what is meant by a dependent source and			
Identify what such a source typically models.			
I am able to solve for voltages and currents in circuits that contain			
dependent sources.			
I can calculate the equivalent impedance of capacitors and			
inductors in series and parallel.			
I am able to calculate the break frequency (i.e. 3 dB frequency) of a			
single time constant RC circuit and understand its significance.			
Given a single time constant RC circuit, I am able to calculate the			
magnitude and phase of voltage across either the R or C			
I am able to articulate what is meant by first order and second order			
electric circuits.			
I am able to determine the complete response of arbitrary first order			
RL and RC circuits.			
I am able to analyze RL and RC circuits in steady-state using			
phasors.			
I am able to define the difference between the instantaneous and			
average power and am able to calculate the two.			
I am able to define what is meant by "complex power" and can			
calculate it in a given electric circuit.			
I am able to define what is meant by "power factor" and can			
calculate its value in a given electric circuit.			
I am able to break down a circuit containing elements such as			
operational amplifiers, resistors, capacitors, inductors and			
dependent sources into sub-circuits to facilitate analysis of the			
complete circuit.			
I am able to develop and describe in writing an outline of an			
approach to analyzing an electric circuit which contains multiple			
and varied circuit elements including operational amplifiers,			
resistors, capacitors, inductors and dependent sources.			
I am able to identify component limitations (e.g. saturation, slew			
rate, power rating, battery life) that may be important in a given			
circuit and suggest means to design the circuit such that component			
limitations are not exceeded.			
I am able to describe the relationship between the time-domain and			
frequency domain descriptions of first-order circuits.			
I am able to use MATLAB to generate arrays of numbers, to plot			
graphs, and to solve systems of linear equations.			
1 am confident in manipulating complex numbers in both			
rectangular and polar form.			
I understand the notion of static offsets in op amps and can			
calculate the output due to these offsets.			
I am confident in determining the key characteristics of an op amp			
given its datasheet.			

Lab Outcomes

Following is a partial list of course outcomes for EELE 201 as related to lab skills. From time to time during the semester, review the list to ensure that you are able to fulfill the outcome statements as the corresponding topics are encountered.

I childre Elst of EEEE Zor Eus outcomes						
Outcome Statement	Strongly Agree	Somewhat Agree	Neither Agree Nor Disagree	Somewhat Disagree	Strongly Disagree	
I am able to use a DMM to make resistance, voltage and current						
measurements.						
I am able to properly bias an op amp (single supply and bipolar						
biasing)						
I am able to use the function generator to establish a variety of time						
varying inputs (sinusoids, pulse waveforms, etc.) and to provide a						
DC offset when necessary.						
I am able to use the oscilloscope to display a given voltage						
waveform (probe compensation, triggering, horizontal and vertical						
scaling, use of cursors and measurement functions).						
I am able to determine amplitude, frequency, period and phase shift						
of a sinusoidal signal using an oscilloscope.						
I can recall and use the formula for converting the time offset						
between equal period waveforms, to their phase offset.						
I understand the difference between the DC and AC coupling						
features of the oscilloscope.						
I understand the difference between 1X and 10X probes.						

Tentative List Of EELE 201 Lab Outcomes