

Engineering For US ALL (E4USA) NSF EEC Grantees Conference October 2019

Overview

- Overview
- Curriculum
- Professional Development
- Partnerships
- Credit and Placement
- Research & Assessment
- Small Group Breakouts
- Final Questions

Introduction

Dr. Darryll Pines University of Maryland

The National Problem

In 2007, *a Carnegie Foundation* commission of distinguished researchers and public and private leaders concluded that "the nation's capacity to innovate for economic growth and the ability of American workers to thrive in the modern workforce depend on a broad foundation of math and science learning, as do our hopes for preserving a vibrant democracy and the promise of social mobility that lie at the heart of the American dream"¹. However, the U.S. system of science and mathematics education is performing far below par and, if left unattended, will leave millions of young Americans unprepared to succeed in a global economy.

Reduction of the United States' competitive economic edge

- Shrinking share of patents: Foreign competitors filed over half of U.S. technology patent applications in 2010.
- Diminishing share of high-tech exports:

Lagging achievement of U.S. students

- The 2012 Program for International Student Assessment (PISA) ranks the United States as 23rd in Science, 30th in Math, and 20th in Reading Literacy out of 65 OECD education systems.
- In 2012, 54% of high school graduates did not meet the ACT's college readiness benchmark levels in math, and 69% of graduates failed to meet the readiness benchmark levels in science.
- Essential preparation for all careers in the modern workforce
- Scientific and technological literacy for an educated society

National Academy Studies

BS Degrees Awarded

Engineering Retention and graduation rates improved

National Enrollment in UG Engineering in the United States

Enrollments started to soar

Changing the High School Engineering Landscape

Imagine...

- Engineering as a fundamental high school subject for all students
- Bringing high school teachers and the engineering community into ongoing conversation in order to iterate on engineering course curricula
- Clearing a pathway from high school into undergraduate and professional engineering programs
- Ensuring high school students have fundamental engineering problem solving skills, which will help them in future studies, and in life...

E4USA: What is it?

- A national pilot program for high school engineering course and database
- Provides a standardized educational curriculum for precollege students to learn and demonstrate engineering principles, skills and practices
- Incorporates a authentic designbased experience
- Has the potential for students to earn universally recognized and transferable engineering course credits at colleges and universities

Step 1

- Big Idea 1: Engineering and Society
- Big Idea 2: Engineering Processes
- Big Idea 3: Essential Engineering Content, Skills and Tools

Underpinned by NAE's Grand Challenges

Sustainability Health Security Joy of living

- Engineering Transfer Goals (Skills and Practices):
- Students will be able to independently use their learning to ...1. Applying engineering methods to create or design systems, components or processes to provide viable and ethical solutions to complex problems.2. Justify decisions, processes, selections and/or actions.3. Collaborate effectively on a multi-disciplinary team.4. Communicate effectively for a variety of purposes and settings.
- Assessment: The assessment will comprise both an end-of-course exam and project-based tasks that students will complete during the term of the course. The end-of-course exam will focus primarily on the Essential Engineering Content, Skills and Tools (Big Idea 3), while the through-course tasks will require students to integrate concepts from all 3 Big Ideas: Engineering and Society, Engineering Processes, and Essential Engineering Content, Skills, and Tools.

0

Step 2 University Pledges

List of Schools

109 to date out of 366 schools

	West Virginia University		Lipscomb University	
	Syracuse University		California State University, Fresno	
	University of Tennessee, Knoxville		University of Delaware	_
	University of Louisville	-	Santa Clara University	_
Old Dominion University	The George Washington University	University of the Pacific	Lamar University	Stony Brook University
Texas A&M University - Kingsville	University of North Dakota	Ohio University	University of Wisconsin-Milwaukee	
University of Toronto	Rutgers University	Clarkson University	University of Maryland	Arizona State University
University of Massachusetts - Amherst	Lake Superior State University	Valparaiso University	Grand Valley State University	University of Idaho
New York Institute of Technology	University at Buffalo	University of North Carolina, Charlotte	Tufts University	University of South Alabama
Oregon State University	Wayne State University	University of New Hampshire	Hofstra University	West Virginia University Institute of
University of Massachusetts - Dartmouth	Florida A&M/Florida State University	University of Portland	Iowa State University	Technology
George Mason University	University of Alaska Fairbanks	University of Connecticut	Western Carolina University	Western Michigan University
City College of New York	Lawrence Technological University	Mississippi State University	California State Polytechnic University,	
University of Virginia	University of Wisconsin-Platteville	Michigan State University	Pomona	
Grove City College	Tennessee State University	North Dakota State University	Virginia Tech	The University of Akron
University of South Florida	University of New Haven	The University of Notre Dame du Lac	St. Louis University	Florida International University
Wichita State University	The University of Arizona	Wright State University	Temple University	The University of California Irvine
Virginia Commonwealth University	University of Rochester	James Madison University	Johns Hopkins University	
University of Washington	Tulane University	Boise State University	The College of New Jersey	The Citadel
University of Kansas	Kettering University	Rowan University	Pennsylvania State University	The University of Texas at Austin
University of Colorado Boulder	University of Kentucky	Embry-Riddle Aeronautical University,	Morgan State University	The University of Southern
University of Utah	University of Denver	Prescott, AZ	State University of New York, ESF	California
University of Mississippi		University of Alabama, Huntsville	University of Washington	Vanderbilt University
Western New England University		North Carolina State University	University of the District of Columbia	Marchall Liniversity
Purdue University		Case Western Reserve University		
University of New Mexico		Embry-Riddle Aeronautical University, Davtona Beach. FL		University, Fort Wayne
		Colorado School of Mines		Stevens Institute of Technology

UNIVERSITY OF MARYLAND

DARRYLL PINES

ETHAN EAGLE

V

BRUK BERHANE

LOYOLA UNIVERSITY CHICAGO

MATTHEW MILLER

Arizona State University

ADAM CARBERRY **ANN MCKENNA**

JAMES COLLOFELLO

MARNIE WONG

MEDHA DALAL

HOPE PARKER

JACKELYN **ROSHWALB**

BEV

WATFORD

KEVIN CALABRO

KEN REID

TECH

CHERYL

BEAUCHAMP

BRIANA O'NEAL

RGINIA

JENNY KOUO STACY KLEIN-GARDNER

STEVE EFE

GRIESINGER

TINA

KEMI LADEJI-OSIAS

Summary

- This is a Watershed "Engineering 4 US All-E4USA" moment in time for our discipline and profession.
- This will be disruptive to the historic K-12 education system. It will move engineering into the lexicon and content view of the educational system.
- The time is now for us to act.
- As engineering educators, we must be willing to
 - Collaborative with other K-12 partners (PLTW, CB, and others)
 - Be Global, and out front on engineering education issues
 - define the Advanced HS Course in Engineering curriculum framework
 - modify our first-year programs to grant credit and placement/exemption
 - modify our general-education curriculum to grant credit and placement for all
- It is our choice, let's not waste this incredible opportunity.

Curriculum

Dr. Kenneth Reid Virginia Tech

Current status:

- Engineering For All first of two courses
- Initial 2019 20 course development complete: in revision
- Incorporated teacher input during summer PD

Curriculum Development Team	Participants
2-day development (College Park)	~10 (2 teachers)
2-day development (Virginia Tech)	~ 8
2-day virtual meeting/workshop	~ 8
(Constant) working meetings	

E4USA Year-Long Curriculum Overview

The curriculum is to be designed as a thirty week course focused on four "big ideas." Unlike other Engineering offerings, this course is intended to provide design experiences and connections for students among fields of personal interest, not a technology focus or survey course.

- Discover Engineering
- Engineering in Society
- Engineering Professional Skills
- Engineering Design

Seven Curriculum Units

Introducing Engineering

- <u>Unit 1</u> Engineering is Everywhere
- <u>Unit 2</u> Engineering is Creative

Applying Engineering: Generating a solution to a local problem

- Unit 3 Engineering is Human-Centered
- Unit 4 Engineering is Responsive

Applying Engineering: Generating a solution to a global issue Unit 5 - Engineering is Intentional Unit 6 - Engineering is Iterative

Generating an engineering solution to a problem relevant to you

Unit 7 - Engineering is Personal

Seven Curriculum Units - Summary

<u>Unit 1</u> - Engineering is Everywhere Discovering engineering, engineering identity

<u>Unit 2</u> - Engineering is Creative Teaming, Design: constraints, stakeholders... <u>Unit 5</u> - Engineering is Intentional Global Problem Identification

<u>Unit 6</u> - Engineering is Iterative Develop & Prototype

<u>Unit 3</u> - Engineering is Human-Centered <u>Unit 7</u> - Engineering is Personal Creating and Evaluating Solutions at a Projects of interest to student(s) local level

<u>Unit 4</u> - Engineering is Responsive Iteration, Re-Engineering, and Accommodating Feedback

Discover Engineering

Big Question - What is Engineering? Am I an engineer?

• Learning outcomes:

• Student Expectations

Discover EngineeringIterate and evolve the definition of what it means to engineer and be an engineer.Awareness of changing perspectives on one's current identities with respect to engineering
through regular reflection.Recognize the value of engineering for all regardless of one's potential career.Explain and apply ethical considerations when exploring an engineering problem.

- Growth mindset students who are motivated to act and create change will excel.
- Engage in critical self-reflection; share what they learn with each other and the community.

Teacher Expectations

 Culturally responsive teaching practice - engaging with students where they are, how they want to learn. Η

Engineering in S	ociety					
Big Questions - Wha	t problems do engineers solve? How does					
engineering interact with society?						
	Engineering in Society					
	Explore the impacts of past engineering successes and failures on society as a whole					
• Learning outcomes:	Use systems thinking to propose and analyze the relationship between inputs, intention, and impacts of technology in society.					
	Recognize and investigate the world's greatest challenges and the role that engineering plays in solving these challenges (e.g., Engineering Grand Challenges, UN sustainability goals, etc.).					
	Integrate diverse disciplinary thinking and expertise to inform design solutions that add value to society.					
	Identify and analyze issues when bringing a solution to scale.					
Student Expectations						

- Adopt multiple viewpoints Logic (Math), Reasoning (Science), 0 Identity (History), Communication (Language), and Purpose (Design)
- Teacher Expectations
 - Mentor access and facilitation for students to connect to practicing engineers Ο

Engineering Professional Skills

Big Question - How do I act like an engineer? How do I communicate?

• Learning outcomes:

	Engineering Professional Skills		
	Apply strategies to collaborate effectively as a team.		
	Use various forms of communication (oral, written, visual).		
Recognize when to use various communication tools based on audience.			
	Develop, implement, and adapt a project management plan.		
	Contribute individually to overall team efforts.		

Student Expectations

- Collaborate towards team projects and grow as a teammate
- Create multi-media content, written (report / poster) and audio/video

Teacher Expectations

- Prepare students and hold them to professional standards
- Provide supports for successful team experiences

Engineering Design

Big Question - What is that designed to do? How can I or we improve it?

• Learning outcomes:

Engineering Design		
Uncover a problem that can be solved with a potentially new product or process.		
Identify appropriate stakeholders and evaluate stakeholder input.		
Plan and conduct research by gathering relevant and credible data, facts, and information.		
Model physical situations using mathematical equations.		
Evaluate solution alternatives and select a final design by considering assumptions, tradeoffs, criteria, and constraints.		
Use and recognize when to use computational tools.		
Create a prototype.		
Create and implement a testing plan to evaluate the performance of design solutions.		
Apply iteration to improve engineering designs.		

Student Expectations

- Find problems. Create artifacts and document their design. Present via a digital portfolio.
- Teacher Expectations
 - Access to making equipment / space

Curricular Challenges

INNOVATIVE MEASURES OF LEARNING

4) Student-driven design project

Professional Development

Dr. Jennifer Kouo Towson University Dr. Adam Carberry Arizona State University

ENGINEERING FOR US ALL

Spring E4USA Virtual Professional Development

In-Person Summer Development Workshop

In-Person Summer Development Workshop

E4USA Community of Practice

Partnerships

High School Partnership Efforts to Date

Academic Year	2019-20 (actual)	2020-21 (planned)
High Schools (AZ, MD, and VA)	5	45
High Schools (other regions)	4	30

2020-2021 E4USA Participation Timeline

- August 2019 High School and College/University Applications Released
- November 15, 2019 High School and College/University Applications Due
- December 2019 High School Sites and College/University Partners Announced
- Spring 2020 Online Professional Development for Educators
- June/July 2020 One-Week E4USA Professional Development ("Summer Institute") for Teachers
- August/September 2020 *E4USA* sites launch courses
- Fall 2020 and ongoing Check in meetings with *E4USA* sites, data collection, and additional online professional development

Site Expectations for High Schools

- The course must be offered as a full-year course.
- The class offering should meet for a minimum of 100 hours prior to the summative course examination scheduled during the second week of May.
- We assume 200 minutes of instructional time per week for a minimum of 30 weeks prior to the mid-May summative examination.
- This course scheduling should permit sufficient time to work on engineering design projects between the start and end of the class meeting times.

ENGINEERING FOR US ALL

Site Expectations for High Schools (cont'd)

- Tools and facilities should be available to ensure students have the opportunity to create prototypes of their designs projects.
- Teachers should be given adequate time during the school day to properly prepare for and generate curricular materials in response to student design project concepts.
- School sites should support each E4USA teacher's attendance at a Summer Institute and participation in virtual or on-site professional development sessions throughout the duration of the school year.

Site Expectations for Colleges and Universities

- Consider accepting this course for college credit on their campus.
- Offer their campus as a site for professional development (note: this does not obligate a college/university to actually facilitate the professional development, but only to offer it as a host site).
- Be a member of the Community of Practice.

G

บร

- Offer \$5,000 for a teacher stipend, and up to \$2,500 for materials and supplies.
- Serve as a resource to provide technical, logistical and other curricular support.

Benefits to Participating Colleges and Universities

- Directly impact the training and preparation of teachers within their geographic area.
- Inspire students to understand how engineering is used in everyday life, and to encourage them to consider applying to their college or university for their postsecondary studies.
- Potentially recruit from a diverse population of high school students, and encourage students to explore one of the engineering majors within their college or university.

Recruitment Webinars

Our next webinar will take place on <u>Wednesday, November 6, 2019</u> at the times noted below:

Prospective High School/District Partners: 6:00 - 7:00 p.m. (Eastern Time)

Prospective University Partners:

3:00 - 4:00 p.m. (Eastern Time)

Prospective partners can visit <u>e4usa.umd.edu</u> to join.

Oct 2019 High School/District Webinar Participants:

- Albuquerque, NM
- Anne Arundel County, MD
- Chattanooga, TN
- Dallas, TX
- Durham, NC
- Nashville, TN
- Union County, NJ

Oct 2019 University Webinar Participants:

- Boise State
- Colorado School of Mines
- Hofstra University
- Mathworks
- New Jersey Institute of Technology
- New Mexico State
- Northeastern University
- Penn State
- Texas State
- The College of New Jersey
- University of Colorado
- University of Michigan
- University of Missouri
- University of Pittsburgh

Next Steps

- Apply to be an *E4USA* college/university partner by Friday, November 15th at <u>e4usa.umd.edu</u>
- The E4USA team is working on a process on how RET schools can partner with the program and we hope to let all of you know at a later date how this will work and what resources might be available.
- Contact Dr. Bruk Berhane at <u>bberhane@fiu.edu</u> or <u>e4usa@umd.edu</u>

Credit and Placement

Motivation

- Create a national pathway for high school students to earn college credit for engineering coursework
 - Limited engineering curricula exist today
 - Limited teacher education programs exists today
- 110+ Deans of Engineering signed a pledge to work toward this goal on their campuses!

Background: 2018 National Workshop

- Concerns over competing E4USA goals of for credit and for all
 - 1 course vs. 2 course sequence?
 - o engineering vs. general education course equivalency?
 - impact of students not taking the unique first-year engineering course on their campus on retention? acclimation to campus/college? Etc.
- The E4USA course developed is envisioned as the first course in a two course sequence that is accessible to all students (low math/science prerequisite background) and that will yield college credit <u>outside</u> of the engineering degree requirements

Short-Term Credit & Placement Pathways

- Credit-by-exam
 - Available at ASU, Morgan State, UMD, VTech, Vanderbilt
- UMD Case Study:
 - Develop/teach an undergraduate course equivalent to E4USA
 - Satisfy one or more degree requirements (I-Series, DSSP)
 - Administer a design portfolio review and examination once the students arrive on campus
 - Student pays a small non-refundable fee (~\$30)

Medium-Term Credit & Placement Pathways

- Disseminate transfer equivalency processes developed at the E4USA grant partner institutions to 25-50 additional higher education institutions
- Collect feedback to better understand what administrators at these institutions find as compelling evidence for granting credit for a general education engineering course.
 - \circ Focus groups
 - \circ Surveys

ENGINEERING FOR US ALL

Long-Term Credit & Placement Solutions

- A national assessment is needed (e.g., AP, IB, or CLEP)
 - Through-course performance tasks (design portfolio)
 - $\circ~$ Summative written examination
 - $\circ~$ Team project / presentation
- Engineering Design Process Portfolio Scoring Rubric (EDPPSR)
 Rubric with 5 components and 14 elements
- Reliability and validity tested measures are needed with cut scores that can be trusted by institutions to ensure credit granted is consistent with the institution's performance expectations.
- Assessment will ideally be curriculum-independent.

Quisit Research Assessment & Evaluation

ENGINEERING FOR US ALL

Dr. Matt Miller, Loyola University Chicago Dr. Stacy Klein-Gardner, Vanderbilt University

E4USA Research Aims

- Our research aims focusing on answering the question: For whom and under what conditions does E4USA work?
- Whom?
 - Teachers with and without engineering background
 - Students from underrepresented populations
- What conditions?
 - online, in-person, and hybrid PD platforms
 - highly resourced vs. under-resourced school systems

E4USA Research Lines and Data

- Line 1: Pilot test of effectiveness (*does it work*) of E4USA PD (for teachers) and curriculum (for students) using quasi-experimental methods.
- Line 2: Test theory-driven hypotheses predictive hypotheses regarding individual and contextual factors that facilitate or hinder engineering outcomes using quantitative (e.g., structural equation modeling) methods
- Line 3: Explore nuanced and individualized E4USA experiences and outcomes using qualitative methods
- Line 4: Obtain real time feedback and input in order to refine and enhance content and delivery using qualitative and quantitative methods

E4USA Research Conceptual Frameworks and Constructs

Social Cognitive Career Theory (Lent et al., 1994) and Understanding by **Design (Wiggins &** McTighe, 2005) \rightarrow Translating engineering design learning experiences into pursuit of engineering

E4USA Initial Findings

Whistling Vivaldi Study

Goals:

- Understand how high school teachers conceive their roles and responsibilities with regard to engineering related stereotypes, stereotype threats, and implicit biases.
- Help teachers make positive changes in their classrooms to ultimately affect student pathways to higher education institutes.

Preliminary findings:

- Recognition of the magnitude of the problem
- Making connections with personal experiences
- Feeling of having limited influence due to other societal messages
- Feelings of guilt associated with awareness of engaging in stereotyping behavior

ENGINEERING FOR US ALL

Partnering with E4USA Research Effort

- Research collaboration is **NOT** required in order to participate in the broader E4USA program
- Research collaboration requires
 - Partnering with a local high school
 - Assisting with university, high school district and/or school level IRB or equivalent approval processes
 - Assisting with consent and assent form distribution and collection
 - Assisting with E4USA data collection protocols involving teachers and students
 - Economy vs. Luxury
- Research collaboration opportunities and benefits
 - Participate in ongoing E4USA program wide research efforts OR develop a smaller scope (e.g., specific to a single teacher, classroom, or district) project with support of E4USA team
 - Presentations and publications
 - Research mentoring from senior scholars

E4USA Research: Where Are We Now?

- IRB approval in four school districts (MD, TN, VA, AZ); IRB approval in other districts in progress
- In-class student data collection ongoing and/or in development
- Pre/post teacher PD data collected in summer/fall 2019; ongoing
- Teacher PD focus group data collected summer/fall 2019; ongoing
- Teacher and student focus groups/interviews to be scheduled mid/late fall 2019

Project Evaluation

Goal 1: Finalize the draft *E4USA* curricular framework, design project guidelines, gain IRB approvals and initiate pilot in the 2019 academic year.

- Review alignment to PD Standards, local/state standards, and framework
- Review curriculum with respect to inclusiveness
- Review IRB protocols and which HEI have approved them
- Review instruction, recruitment, and selection practices at K-12 sites in MD, AZ, TN, DC, PA and VA

Project Evaluation

Goal 2: Implement the UMD data collection protocols across collaborating higher education institutions, school districts and high schools (pilot sites) and train the teachers.

- Observe PD in action at a variety of sites
- Create focus group protocols and conduct focus groups with teachers
- Focus groups with HEI, NASA, other organizations
- Focus groups with students
- Employ quasi-experimental design to test efficacy of PD
- Review progress on creation of data collection system
- Test data collection procedures and monitor results as they are reported

Project Evaluation

Goal 3: Support pilots within the up to 30 collaborating RET Sites

- Prepare focus group plans
- Quarterly and Annual Reports

Where do we want to be?

In Year 2 and beyond, we want to monitor student and teacher development as it relates to our research hypotheses around confidence, knowledge, etc.

We will rely on moving this project to scale in Year 2 so that we have adequate sample sizes

How do we get there?

Create and disseminate protocols to teachers for collecting and submitting research instruments and participating in focus groups.

Anticipated challenges:

- Logistics of collecting all of this data
- Recruitment of schools/districts willing to participate fully
- Compliance of students, teachers, and schools

