Organizational Systems, Leadership, and Teamwork

Steve W. J. Kozlowski, Ph.D.
Department of Psychology
Michigan State University

Accelerating Engineering Research Center Preparedness Workshop
October 2-3, 2018 - Crystal City Hyatt Regency, Arlington, VA

The views, opinions, and/or findings contained in this presentation are solely those of the author and should not be construed as an official AHRQ, ARI, NASA, NSF, or ONR position, policy, or decision, unless so designated by other documentation.
Agenda

- Fundamental Forces in Organizational Systems
- Fundamental Forces for Team Functioning & Effectiveness
- Enhancing Team Processes and Effectiveness
- Team Science Considerations
- Leadership
 - Targeting Team Processes
 - Shaping the System
Organizations are Multilevel Systems: Context, Levels, Task, and Time

- **Context**: Interactive and enacted
 - Person-situation interaction

- **Multilevel**: Top-down Effects and Bottom-up Emergence

- **Task**: Task-driven interdependencies
 - Determine goals, roles, and coordination demands

- **Time**: Temporal entrainment and dynamics
Organizations are Multilevel Systems: Top-Down Context Shapes Team & Individual Phenomena

- The hierarchical structure of social organizational systems creates a context
- Individuals are embedded in teams and teams are nested in the broader organizational context
- Context influences and constrains behavior at lower levels of the system
- Teams are the primary social unit in organizations – *meso is the juncture of macro and micro forces*
Emergence – Process is bottom-up

“A phenomenon is emergent when it originates in the cognition, affect, behaviors, or other characteristics of individuals, is amplified by their interactions, and manifests as a higher-level, collective phenomenon” (p. 55).

- Dynamic team processes emerge over time as relatively stable “emergent states”
 - Cognitive, motivational / affective, and behavioral
Emergence Process Dynamics

Contextual Influences

Composition Convergence
Compilation Divergence

Process mechanisms

(Kozlowski, Chao, Grand, Braun & Kuljanin, Organizational Research Methods, 2013)
Effective Leaders Harness Top-Down Mechanisms to Shape & Amplify Bottom-up Processes

Techno-Structure

Macro:
- Mission & Strategy
- Technology & Structure

Meso:
- Unit Technology
- Workflow Structure

Micro:
- Requisite Task KSAs
- Teamwork KSAs

Enabling Processes

Within-Level Alignment
- Leadership
- Organizational Climate

Cross-Level Alignment
- Shared & Distributed Knowledge
- Collective Motivation
- Collaboration & Coordination

- Technical Knowledge
- Process Knowledge

Key Considerations for Team Effectiveness: Context, Levels, Task, and Time

- **Context**: Interactive and enacted
 - Person-situation interaction

- **Multilevel**: Top-down Effects and Bottom-up Emergence

- **Task**: Task-driven interdependencies
 - Determine goals, roles, and coordination demands

- **Time**: Temporal entrainment and dynamics
Team Task Workflows

Task Environment:
- Static

External Coupling:
- Loosely Coupled

Internal Coupling:
- Asynchronous
- Weak Linkages

Workflow Interdependence:
- Pooled
- Sequential
- Reciprocal

Team Task Complexity

Team Processes Resolve Dynamic Task Demands => Performance

- Environmental variation and shifts drive team task demands
- Team processes resolve (or fail to resolve) task demands
- Team processes link to team performance
- *Team performance is dynamic, adaptive, and emergent*

(Adapted from Kozlowski et al., 1996, RPHRM)
Enhancing the Effectiveness of Team Science
(National Research Council, 2015)

COMMITTEE ON THE SCIENCE OF TEAM SCIENCE

NANCY J. COOKE (Chair), Human Systems Engineering, The Polytechnic School, Arizona State University
ROGER D. BLANDFORD (NAS), Department of Physics, Stanford University
JONATHON N. CUMMINGS, Fuqua School of Business, Duke University
STEPHEN M. FIORE, Department of Philosophy, University of Central Florida
KARA L. HALL, Behavioral Research Program, National Cancer Institute
JAMES S. JACKSON (IOM), Institute for Social Research and Department of Psychology, University of Michigan, Ann Arbor
JOHN L. KING, School of Information, University of Michigan, Ann Arbor
STEVEN W. J. KOZLOWSKI, Department of Psychology, Michigan State University
JUDITH S. OLSON, Department of Informatics, University of California, Irvine
JEREMY A. SABLOFF (NAS), Santa Fe Institute
DANIEL S. STOKOLS, School of Social Ecology, University of California, Irvine
BRIAN UZZI, Kellogg School of Management, Northwestern University
HANNAH VALANTINE, Office of the Director, National Institutes of Health

Study sponsored by the National Science Foundation and Elsevier
Enhancing Team Effectiveness

(Kozlowski & Bell, 2003, 2013, in press; Kozlowski & Ilgen, 2006)

- 70+ years of research on work group & team effectiveness
- Focused on well-established findings
- **Emergent team processes** ➔ team effectiveness
 - Cognitive, motivational/affective, and behavioral processes
- **Interventions** that show demonstrated effects or promising findings for influencing the quality of team processes

Findings guide application; Gaps guide future research
Work Teams Are …

- Two or more individuals (~ 7+/- 2 or they self-organize into smaller units)
- Who interact (face-to-face or virtual network)
- Have one or more common goals
- **Exist to perform task-relevant functions**
- **Exhibit work interdependencies (goals, workflow, outcomes) and differentiated roles**
- **Embedded in an organizational system**
- **With boundaries and dynamic linkages to the system and task environment**
Enhancing the Effectiveness of Work Groups and Teams

Factors that Shape, Leverage, or Align Processes

Organizational System, Contextual Contingencies, and / or Environmental Dynamics and Complexity

- Environmental dynamics and complexity drive team task demands
- Team processes align team member resources to fit demands
- Team outputs influence the environment
- Cycles are reciprocal over time

Steve W. J. Kozlowski
Michigan State University
Key Team Processes and Recommended Interventions

Team Process Typology:
- Cognitions
 - Knowledge
 - "Thinking"
- Motivational States
 - Effort & Affect
 - "Feeling"
- Behaviors
 - Skills
 - "Doing"

Targeted Team Processes:
- Cognitions
 - Team Climate
 - Mental Models
 - Transactive Mem
- Motivational States
 - Team Cohesion
 - Team Efficacy
 - Group Potency
- Behaviors
 - Coord/comm
 - Competencies
 - Regulation & Adaptation

Recommended Interventions:
- Team Design
- Training & Development
- Leadership

Steve W. J. Kozlowski
Michigan State University

Organizational Systems & Team Effectiveness

Accelerating ERC’s
October 2018
<table>
<thead>
<tr>
<th>Cognitive Processes</th>
<th>Concept</th>
<th>Evidence</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Climate</td>
<td>Strategic imperatives</td>
<td>Meta-analysis; Substantial research foundation</td>
<td>Application ready; Train science team leaders to build a strong team vision & mission climate</td>
</tr>
<tr>
<td>Team Learning</td>
<td>Psychological safety; learning from errors; supportive feedback; open leadership</td>
<td>Substantial systematic research foundation</td>
<td>Application ready; Train science team leaders to create psychological safety to support team learning</td>
</tr>
<tr>
<td>Knowledge Building</td>
<td>Information sharing mechanisms</td>
<td>Meta-analysis; Computational modeling</td>
<td>Develop communication and knowledge sharing protocols; Leadership can shape the process</td>
</tr>
<tr>
<td>Team Mental Models</td>
<td>Shared knowledge structures</td>
<td>Meta-analysis</td>
<td>Application ready; Train science team leaders to conduct pre-briefs and debriefs; Provide team training</td>
</tr>
<tr>
<td>Transactive Memory</td>
<td>Team distributed memory</td>
<td>Meta-analysis</td>
<td>Facilitate interaction and shared experience; Research needed on interventions</td>
</tr>
</tbody>
</table>
Motivational / Affective Processes

<table>
<thead>
<tr>
<th>Motivational / Affective Processes</th>
<th>Concept</th>
<th>Evidence</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Cohesion</td>
<td>Task commitment and social attraction</td>
<td>Multiple meta-analyses</td>
<td>Leaders can shape and influence cohesion formation</td>
</tr>
<tr>
<td>Team Efficacy</td>
<td>Shared confidence for goal attainment</td>
<td>Meta-analysis</td>
<td>Application ready; Train science team leaders to build and instill team efficacy; Provide team training</td>
</tr>
<tr>
<td>Conflict Management</td>
<td>Group emotions</td>
<td>Research foundation</td>
<td>Application ready; Train basic skills to team leaders and team members to manage task, relationship & process conflict</td>
</tr>
</tbody>
</table>
Behavioral Processes

<table>
<thead>
<tr>
<th>Behavioral Processes</th>
<th>Concept</th>
<th>Evidence</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team coordination, cooperation, and communication</td>
<td>Combination of member actions; information exchange</td>
<td>Systematic research foundation</td>
<td>Application ready; Design supporting goal and feedback systems; Train science team leaders to develop team regulatory skills; Provide team training</td>
</tr>
<tr>
<td>Team member competencies</td>
<td>Teamwork KSAs</td>
<td>Systematic research foundation</td>
<td>Application ready; Provide teamwork skills training to science team members</td>
</tr>
<tr>
<td>Team regulation</td>
<td>Regulation of attention and effort</td>
<td>Systematic research foundation</td>
<td>Application ready; Train science team leaders to develop team regulatory skills</td>
</tr>
</tbody>
</table>
Science Team Challenges:
- They are like other work teams, but can be **complicated**

TABLE 1-1. Dimensions of Team Science

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity of team or group membership</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Disciplinary integration</td>
<td>Unidisciplinary</td>
</tr>
<tr>
<td>Team or group size</td>
<td>Small (2)</td>
</tr>
<tr>
<td>Goal alignment across teams</td>
<td>Aligned</td>
</tr>
<tr>
<td>Permeable team and organizational bounds</td>
<td>Stable</td>
</tr>
<tr>
<td>Proximity of team or group members</td>
<td>Co-located</td>
</tr>
<tr>
<td>Task interdependence</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Heterogeneous</td>
</tr>
<tr>
<td></td>
<td>Transdisciplinary</td>
</tr>
<tr>
<td></td>
<td>Mega (1000s)</td>
</tr>
<tr>
<td></td>
<td>Divergent or Misaligned</td>
</tr>
<tr>
<td></td>
<td>Fluid</td>
</tr>
<tr>
<td></td>
<td>Globally distributed</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

SOURCE: Created by the committee.
<table>
<thead>
<tr>
<th>Inputs</th>
<th>Concept</th>
<th>Evidence</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Structure</td>
<td>Structure of roles, responsibilities, goals, and authority</td>
<td>Substantial research foundation</td>
<td>Application ready; Apply design principles for larger science “teams”</td>
</tr>
<tr>
<td>Workflow Design</td>
<td>Structure by which information and effort flow among team members</td>
<td>Substantial research foundation</td>
<td>Application ready; More complex workflows necessitate more active leadership, coordination, and communication protocols</td>
</tr>
<tr>
<td>Virtuality</td>
<td>Distribution of team members across time and space</td>
<td>Substantial research foundation</td>
<td>Places increased demands on science team leaders to coordinate information & effort</td>
</tr>
<tr>
<td>Team Composition</td>
<td>The pattern of individual differences (e.g., demographics and ability, experience, values, personality, culture, etc.) across team members</td>
<td>Meta-analyses</td>
<td>A critical input for team effectiveness Focus on key knowledge & skills; orientation toward collaboration & teamwork</td>
</tr>
</tbody>
</table>
Team Leaders are “linking pins” that integrate teams or units in a hierarchical organizational system.

Integration via leaders as linking pins

Differentiation by problem, project, discipline, function, etc.
Between Team Linkages - Hierarchy and / or …

Teams of Teams, Team Networks – Multi-Team Systems

Liaison Roles – Lateral Team Links
Linking Diverse Members: International Science Team
- Activate a team network; prevent “faultlines”

Developmental Sequence

Formation
- New Teams
 - Mentor
 - Objectives:
 - Meld new members to the team, its mission, & goals;
 - Build shared affect and attitudes to bond members to the team

Development
- Novice Teams
 - Instructor
 - Objectives:
 - Build skill proficiency for individuals;
 - Develop self-efficacy, knowledge, & cognitive-structure

Refinement
- Expert Teams
 - Coach
 - Facilitator
 - Objectives:
 - Promote team capabilities & behavior;
 - Build team-efficacy, shared mental models, & compatible behavior
 - Aid situation assessment, maintain & recover team coherence

Team Leader Role:
- New Teams: Mentor
- Novice Teams: Instructor
- Expert Teams: Coach & Facilitator

Task Cycle
- Low Intensity Task

Learning Cycle
- SET LEARNING GOALS
- GUIDE PROCESS FEEDBACK
- DIAGNOSE ERRORS
- MONITOR PERFORMANCE

Low Intensity Task
- High Intensity Task
Leadership Theory “Tools” or Concepts

- Transformational Leadership
 - Compelling vision, engaging members, collective orientation

- Relational Leadership
 - Crafting roles & relations, facilitating proaction & initiative

- Functional Leadership
 - Ensure task accomplishment & team functioning
 - ‘leader’s job make sure it’s done, not necessarily to do it all’

- Shared Leadership
 - Leadership functions are distributed across the team
Improving Science Team Effectiveness

➢ A wealth of solid research support for the importance of several key team processes ➞ team effectiveness
 ➢ Cognitive – Unit-team climate, TMM, TM
 ➢ Motivational – Team cohesion and team efficacy
 ➢ Behavioral – Team competencies and regulatory mechanisms

➢ A wealth of theory and empirical support for interventions that enhance team processes and performance
 ➢ Team design, team training, team leadership
Thanks … Questions?
Resources

